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Abstract

This paper presents a hybrid approach for tracking humans with a mobile robot that integrates face and leg detection results
extracted from image and laser range data, respectively. The different percepts are linked to their symbolic counterparts
legs and face by anchors as defined by Coradeschi and Saffiotti [Anchoring symbols to sensor data: preliminary report,
in: Proceedings of the Conference of the American Association for Artificial Intelligence, 2000, pp. 129–135]. In order to
anchor the composite objectpersonwe extend the anchoring framework to combine different component anchors belonging
to the same person. This allows to deal with perceptual algorithms having different spatio-temporal properties and provides
a structured way for integrating anchor data from multiple modalities. An evaluation demonstrates the performance of our
approach.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The increasing availability of mobile robot plat-
forms with good navigation capabilities provides a
basis for the exploration of advanced human–robot
interfaces (HRI). The development of systems with
natural HRI is an important prerequisite for the
widespread use of robots in home and office environ-
ments[1]. However, building powerful interfaces that
go beyond a simple dialog-based interaction between
user and robot is challenging. Due to the nature of
mobile systems it is necessary to use sensor devices
that can be carried on-board a small robot for realiz-
ing an HRI. Additionally, the sensing techniques must
be non-intrusive, i.e. a human must be allowed to
interact with the robot without having to wear special
equipment (e.g. markers, colored gloves) to enable
the robot’s sensors to observe him. Standard multi-
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media cameras are cheap sensors that can be used
for observing a human instructor to track his position
and recognize gestural instructions[3,22]. However,
despite intensive research in computer vision, the
variations in lighting conditions encountered in dy-
namic environments pose major problems for tracking
humans based on their visual appearance. For exam-
ple, the color of a human face changes significantly
if the lighting conditions are varied. A face detection
process based on color may therefore fail to always
detect the face in the images of a sequence depicting
a human moving through an office. At the same time
there may be background objects entering the field of
view of the camera that have a face-like color. Conse-
quently, the feature sequence belonging to an image
sequence may contain false positives (background
objects) and false negatives (missed faces).

In order to enable the robot to track humans over
time despite inaccuracies in the feature sequence,
the tracking algorithm can make use of temporal in-
formation and context knowledge. These sources of
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information allow to (1) select the features match-
ing an internal symbolic description of the object to
be tracked, and (2) focus processing on a subset of
all features. The latter is especially important if the
sensor capability is limited, the processing power is
small, or several objects are present.

The anchoringframework by Coradeschi and Saf-
fiotti [4,5] aims at providing a method for tracking
objects over time by defining a theoretical basis for
grounding symbols to percepts originating from phys-
ical objects. The practical capability is demonstrated
with examples dealing with a single type of percept
obtained by processing camera images.

However, in complex environments several different
sensors can generate different types of percepts orig-
inating from the same physical object. Additionally,
the spatio-temporal properties of the different types of
percepts can vary significantly. We propose a solution
to these problems by anchoring a symbol denoting a
composite objectthrough anchoring the symbols of its
correspondingcomponent objects. In this solution, the
composite anchoring module is responsible for fus-
ing the data of the component anchors. Our approach
to integrate several anchoring processes can be easily
extended to other modalities and allows for parallel
or distributed anchoring of component symbols. To
demonstrate our approach we perform person tracking
by anchoring the symbolpersonthrough anchoring the
symbolslegsandfaceto the corresponding percepts.

In extension to the original use of anchoring for con-
necting one symbol system to one perceptual system,
our application concentrates on solving the challeng-
ing task of tracking composite objects, i.e. humans.
Therefore, we use a symbol system that only contains
predicate symbols describing the identity of persons
to be tracked. The use of more predicate symbols in
the symbol system to support more complex inter-
actions using, for example, speech (e.g. ‘Follow the
small person with the red shirt’) will be the focus of
future work.

In the following section we will give a review of re-
lated work. The original anchoring framework will be
described inSection 3. The basic idea of the proposed
integration framework is presented inSection 4, while
Section 5describes some extensions to cope with
multiple composite objects. The application to person
tracking is described inSection 6. Section 7presents
an extensive evaluation of the complete system. The

article concludes with a summary of the presented
work.

2. Related Work

Our approach extends work by Coradeschi and Saf-
fiotti [4,5], and therefore their anchoring framework is
described in detail inSection 3. In this section we will
concentrate on the related techniques of data associa-
tion and fusion, as these techniques bear similarities
to our approach.

Bar-Shalom and Li discuss in[2, Ch. 8.2] differ-
ent types of configurations for multisensor tracking
including a hybrid approach. The so-called Type I
configuration denotes a standard single sensor track-
ing system. Type II configurations perform Type I
tracking for several sensors and subsequently fuse
the individual tracks, while Type III proposes a direct
synchronoussensor data fusion across multiple sen-
sors before performing tracking on the fused sensor
data. The Type IV configuration, instead, uses local
data association for the individual sensors but a global
tracking. However, this configuration still requires
synchronous sensor data. For fusing data originating
from sensors at different sites, a hierarchical hybrid
configuration for multisensor–multisite tracking is
proposed.

For person tracking using different sensing modal-
ities a variety of approaches and fusion methods have
been developed. Darrell et al.[6] use a Type II data
fusion method to integrate depth information, color
segmentation, and face detection results. Fusing the
individual tracks is done using simple rules. Likewise,
Okuno et al.[11] use a Type II configuration to fuse
auditory and visual information from talking persons.
Track fusion is done rule-based, but differently from
[6] thresholds on the track differences are used to
avoid fusing different tracks. A Type III configuration
is used by Feyrer and Zell[7] to track persons based
on vision and laser range data. The two types of sensor
data are fused by adding a two-dimensional Gaussian
to a potential field representation for each potential
person position. After initial selection of the person
to be tracked, another Gaussian is added to the po-
tential field at the Kalman filtered position estimate to
maintain temporal coherence. Type IV configurations
with sequential processing of the individual sensors
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are often implemented hierarchically. After associat-
ing coarse position estimates, a smaller search space is
used for processing more precise sensor data. Schlegel
et al. [15] propose vision-based person tracking that
uses color information to restrict the image area that
is processed to find the contour of a human. A more
sophisticated method to realize the sequential search
space reduction is proposed by Vermaak et al.[21]. In
their approach sound and vision data are sequentially
fused using particle filtering techniques.

Although we perform person tracking using a cam-
era and a laser range finder which are on-board a mo-
bile robot, we have to perform multisite tracking in a
hybrid configuration, as different components of a hu-
man are observed from different positions. In contrast
to the intersite association and overall information
fusion proposed in[2] we developed a model-based
modular integration scheme that extends the an-
choring framework described inSection 3. Besides
enabling classical tracking with multiple sensors at
different sites, anchoring allows to maintain represen-
tations for temporarily occluded objects and provides
mechanisms for reacquiring the object. Therefore,
anchoring can be understood as an extension to clas-
sical tracking approaches that defines a framework
for dealing with missing sensor data in a structured
way. The proposed multi-modal anchoring approach
is easy to implement, has transparent structure, and
exhibits efficient, low complexity performance.

3. Anchoring

The problem of recognizing objects by linking
features extracted from sensor data to an internal
symbolic representation is especially prominent in an
autonomous system whose environment is constantly
changing. Such a system needs to establish connec-

Fig. 1. Linking symbols to sensory data with anchors.

tions between processes that work on the level of
abstract representations of objects in the world (sym-
bolic level) and processes that are responsible for the
physical observation of these objects (sensory level).
These connections must be dynamic, since the same
symbol must be connected to new sensor data every
time a new observation of the corresponding object
is acquired.

We follow the definition of anchoring proposed by
Coradeschi and Saffiotti[5]. They define anchoring as
the problem of creating and maintaining in time the
correspondence between symbols and sensor data that
refer to the same physical object. Basically anchoring
incorporates asymbol systemand aperceptual sys-
temthat are linked by an anchor (Fig. 1). The symbol
system includes a set of individual symbols and a set
of unary predicate symbols. Each individual symbol
has a symbolic description which is a set of predicate
symbols. The perceptual system includes a set ofper-
ceptsand a set ofattributes. A percept is a structured
collection of measurements assumed to originate from
the same physical object. An attribute is a measurable
property of a percept. The set of attribute-value pairs
of a percept is called theperceptual signature.

The role of anchoring is to establish a correspon-
dence between a symbol, which is used to denote an
object in the symbol system, and a percept generated
in the perceptual system by the same object. This is
achieved by comparing the symbolic description and
the perceptual signature via a predicate grounding re-
lation g. This relation constitutes the correspondence
between unary predicates and values of measurable at-
tributes. For example,g could specify that a symbol
with the predicatelargecorresponds to a percept, if the
value of its attributesizeis above a certain threshold.
The relationg can be embedded in a functionmatch
that evaluates whether a given perceptual signature is
consistent to a given symbolic description or not. The
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correspondence between symbol and percept is repre-
sented in an internal data structureα, called anchor.
Since new percepts are generated continuously within
the perceptual system, this relation is indexed by time.

At every momentt, the anchorα(t) contains three
elements: a symbol, meant to denote an object inside
the symbol system; a percept, generated inside the
perceptual system by observing an object; a signature,
providing the estimate of the values corresponding to
the observable properties of the object. The anchorα is
groundedat timet, if it contains the percept perceived
at t and the updated signature. If the object is not
observable att and so the anchor isungrounded, then
no percept is stored in the anchor but the signature
still provides the best available estimate.

In order to solve the anchoring problem for a given
symbolx in a dynamic environment three main func-
tionalities have been outlined in[4,5]:

• Find. Create a grounded anchor the first time that
the object denoted byx is perceived. The function
match is used to assure that the symbolic descrip-
tion matches the perceptual signature. In case of
multiple matching percepts, aselectioncan either
be made inside the find functionality or by the sym-
bol system.

• Track. Continuously update the anchor while ob-
serving the object. In this case the prediction is
achieved by a specificone-step-predictfunction.
The predicted signature is compared to the per-
ceived attributes with amatch-signaturefunction.
This allows to find percepts compatible with the
attributes of the percepts anchored to the symbol
in the previous steps. In case of multiple matching
percepts, theselectfunction is used to choose one
percept.

• Reacquire. Update the anchor when the object has to
be reacquired, i.e. if the anchor is ungrounded. This
is used to locate an object when there is a previous
perceptual experience of it. The experience is used
to predict a new signature which is then compared
to newly acquired percepts. Here, the prediction is
generally more complex than in thetrack case. If it
is verifiedby usingmatchthat a percept is compati-
ble with the prediction and the symbolic description
then the current signature isupdated. Again, in case
of multiple matching percepts, aselectfunction is
used to choose one percept for updating.

For a detailed description of the formal anchoring
framework the interested reader is referred to[4,5].

4. Multi-modal anchoring

Up to now the literature on anchoring considers
only the special case of connecting one symbol to the
percepts from one sensor. However, the real world
contains objects that cannot be captured completely
by a single sensor. If several sensors are used, the
symbolic description of the object has to be linked
to several different types of percepts acquired from
different modalities.

One solution is the extension of the anchoring def-
inition to link several percepts to a single symbol.
However, with such an approach the integration of
different types of percepts with different processing
times makes it necessary to anchor the individual
percepts asynchronously. Additionally, if the different
percepts relate to different parts of the object the spa-
tial relations between them need to be incorporated
into the predicate grounding relation to obtain a con-
sistent result. Consequently, the resulting algorithm
for this solution may become very complex from an
implementational point of view.

Therefore, we propose a modular approach (Fig. 2)
that allows to anchor a symbol of a composite object
by distributed anchoring of the corresponding compo-
nent objects based on the related percepts originating
from multiple modalities. This modular approach
provides a structured way for simple integration of

Fig. 2. Multi-modal anchoring.
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additional component anchors and facilitates parallel
anchoring of different types of percepts. The infor-
mation provided by the individual perceptual systems
of the component anchors is collected by a composite
anchoring process for integration. The combined data
is again stored in an anchor structure, the so-called
composite anchor.

The main difference to original anchoring is that
the symbol corresponding to the composite object has
no direct perceptual counterpart. Every time a compo-
nent anchoring process has chosen a new percept for
updating its anchor, the percept is linked to the sym-
bol of the composite object. The composite anchoring
process then calculates its own perceptual signature by
incorporating the signature of the component anchor.
Usually, this signature can only be used to update a
subset of the available attributes of the composite an-
chor, because the associated percept originates only
from the perceptual system of a component object.

The main functionalitiesfind, track, andreacquire
defined in the original anchoring do not directly exist
for the composite anchor module. These functions
are carried out by the component anchoring processes
that also initiate updates of the composite anchor. The
composite object is anchored/grounded, if at least one
component object is anchored/grounded. Because ev-
ery component anchor module has different predicate
symbols, it also contains its own predicate grounding
relation. The predicate grounding relation of the com-
posite anchor module embodies the correspondence
between predicates concerning the composite object
and attribute data calculated from attribute values
originating from the different component anchoring
processes.

In order to coordinate all component anchoring
processes, it must be ensured that the different sen-
sors observe the same composite object. The com-
ponent anchoring processes have to be supplied with
position estimates for the composite object, and the
composite anchoring process has to fuse the informa-
tion supplied by the component anchors. Therefore,
a composition model, a motion model, and afusion
modelare provided.

The composition modelcontains the spatial re-
lationships between the composite object and its
components. It ensures that the individual anchoring
processes only select percepts that are compatible
with the composite object. At startup, a component

anchoring process establishes a grounded anchor sim-
ply if its symbolic description matches the perceptual
signature. Hence, the composite anchor is initialized
and from now on data about the composite object is
provided to its component anchoring processes as fol-
lows: thematchfunction of every component anchor
is extended to additionally make sure that the com-
position relations provided by the composition model
of the composite object are satisfied. Therefore, the
predicatepart-of-Sis added to the symbolic descrip-
tion of the component anchors whereS is the symbol
of the corresponding composite object. After a com-
ponent anchoring process has executed its extended
match, the composite anchoring process can perform
its ownmatchto check whether its symbolic descrip-
tion matches the corresponding perceptual signature
of the processed percept.

The motion modeldescribes the motion behavior of
the composite object and allows to predict its position.
Together with the spatial relations provided by the
composition model a component anchoring process
can predict the position of its underlying component
object. Especially for steerable sensors which allow
to select the desired field of view it may be necessary
to use information about the composite object. In this
case a steerable sensor can be pointed into the direction
where a percept is expected in order to establish the
corresponding component anchor.

The fusion modelis used for integrating the various
signatures of the component anchors in the compos-
ite anchor. Every time a component anchoring process
has processed new percepts, it sends its new signature
to the composite anchor module. This signature refers
to the point of time in the past when the corresponding
sensor data was acquired. Since the different percep-
tual systems achieve different processing speeds, the
composite anchor module does not always receive the
attribute data from component anchors in correct tem-
poral order. In order to ensure that the attribute data
is fused to the signature of the composite anchor at
the appropriate point of time, the composite anchoring
process maintains a list containing all signatures sorted
in chronological order. New attribute data is inserted
in the list and the signature of the composite anchor is
updated for the corresponding point of time based on
the fusion model. If the list already contains entries
that are newer than the inserted one, then the fusion of
the signatures of the composite anchor is repeated for
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the subsequent points of time. The underlying speci-
fication of the fusion itself is domain dependent.

5. Anchoring multiple composite objects

Usually, more than one object has to be tracked
simultaneously. Then, several anchoring processes
have to be run in parallel to keep track of the dif-
ferent objects. In this case, multi-modal anchoring
as described in the previous section may lead to the
following conflicts between the individual composite
anchoring processes:

• A percept is selected by more than one anchoring
process.

• The anchoring processes try to control a steerable
sensor contradictorily.

In order to resolve these two problems, asupervising
moduleis introduced, which manages all composite
anchoring processes. It coordinates the selection of
percepts and schedules access to steerable sensors.
The supervising module grants access to steerable
sensors only to the composite anchoring process
which holds the so-calledanchor of interest. The de-
cision which is the anchor of interest depends on the
intended application.

In order to coordinate the selection of percepts the
selectfunctionalities of the individual component an-
chor modules have to be modified. These modules no
longer select percepts individually. Instead, they as-
sign to every percept a score, which is the higher the
better a percept fits the anchor. Based on these scores
an overall selection can be performed (Fig. 3). Any
possible selection result can be expressed as a list of
assignments, where thenth entry of the list contains

Fig. 3. Modification ofselectin component anchor modules.

the number of the percept which is selected for thenth
anchor. Note, that the entries of the list have to be pair-
wise different in order to describe a consistent result.
The total score of an overall selection is defined as the
sum of the scores corresponding to the assignments.
The aim is to find the optimal result, which is the se-
lection yielding the maximum total score. The corre-
sponding search is realized using a search tree: the root
of the tree is given by the empty list, whose list entries
are all undefined. For every successive node the num-
ber of undefined entries decreases by 1. The leaves of
the search tree contain all possible overall selections.
Since the maximum of all scores assigned by an an-
chor is known, the total score of a partially undefined
list can be estimated optimistically. Hence, the search
can be efficiently realized using the A∗-algorithm.

However, the number of percepts not necessarily co-
incides with the number of anchors. If there are more
anchors than percepts, not every anchor is assigned a
percept and therefore is not updated. If there are more
percepts than anchors, not every percept is assigned to
an anchor. The remaining percepts are used to estab-
lish new anchors. Additionally, an anchor that was not
updated for a certain period of time will be removed
by the supervising module.

6. Person tracking in a dynamic environment

In order to prove the feasibility of our multi-modal
anchoring approach, we demonstrate its use for per-
son tracking with a mobile robot. Person tracking is
a prerequisite for every HRI and has to be realized
with the available on-board sensors which often can
capture only a part of the human body due to the usu-
ally small distance between the human and the robot.
Our robot can observe a person with a camera and a
laser range finder. Based on the skin-colored regions
extracted from camera images the face of a person
can be detected and identified. The beam from the
laser range finder is at leg-height and, consequently,
human legs can be detected. In this section we will
first present our mobile system. Then, the algorithms
to extract the leg and face percepts will be described.
Finally, component anchoring and anchoring of the
composite object person is explained.

Our hardware platform (Fig. 4) is a PeopleBot from
ActivMedia with two on-board PCs (Pentium III, 850
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Fig. 4. Our PeopleBot following a person.

and 500 MHz, respectively). The first PC is used for
controlling the motors and the on-board sensors while
the second one is used for image processing. Both
PCs run Linux and are linked with a 100 Mb Ether-
net. A SICK laser range finder is mounted at the front
at a height of approximately 30 cm. Measurements
are taken in a horizontal plane, covering a 180◦ field
of view. A pan-tilt color camera (Sony EVI-D31) is
mounted on top of the robot at a height of 140 cm for
acquiring images of the upper body part of humans

Fig. 5. A sample 2D laser scan. The arrow marks a pair of legs.

interacting with the robot. For robot navigation we
use the ISR (Intelligent Service Robot) control soft-
ware developed at the Center for Autonomous Sys-
tems, KTH, Stockholm[10].

6.1. Detection of human pairs of legs in 2D laser
scans

In mobile robotics 2D laser range finders are often
used, primarily for robot localization and obstacle
avoidance. A laser range finder mounted at the height
of legs can also be applied to detect persons.Fig. 5
shows a sample laser scan with a person standing in
front of the robot. The legs result in a characteristic
pattern.

Detecting legs in laser scans was already consid-
ered for mobile systems. In[16] for every object fea-
tures like diameter, shape, and distance are extracted
from the laser scan. Then, fuzzy logic is used to de-
termine which of the objects are pairs of legs. In[17]
local minima in the range profile are considered to be
pairs of legs. Since other objects (e.g. trash bins) pro-
duce patterns similar to persons, additionally moving
objects are distinguished from static objects.

Our approach for the detection of human legs is
based on laser scans with an angular resolution of
0.5◦. Generally, persons can be located by two closely
positioned segments. A segment within a laser scan
consists of consecutive reading points with similar
distance values, which usually result from a smooth
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surface of a single object. Large differences of distance
values are due to edges or occlusions. Thus, single
human legs are mostly observed as single segments.

The detection of pairs of legs consists of three steps:
segmentation, classification, andgrouping. In the first
step the laser scan is split into segments. Each segment
consists of a maximum number of successive reading
points, where the differences of the distance values
of two consecutive points are below a given threshold
(chosen as 75 mm). In the following step each segment
is classified asleg or non-leg, based on the following
features: number of reading points(n), mean distance
(µ), standard deviation of the distances(σ), width in
world coordinates in a direction perpendicular to the
laser beam(w), and distances to the adjacent segments
(d1 andd2). We obtained satisfying results using the
following conditions to classify a segment asleg:

(n > 4) ∧ (µ < 3000 mm) ∧ (σ < 40 mm)

∧(50 mm< w < 250 mm)

∧(max(d1, d2) > 250 mm)

∧(min(d1, d2) > −50 mm).

In the final step single legs are grouped into pairs de-
pending on their distance in world coordinates, which
is chosen to be below 500 mm.

In certain cases one leg of a person is occluded by
the other one, and thus only a single leg will be de-
tected. In order not to discard this information, theper-
ceptsgenerated by this perceptual subsystem include
all detected pairs of legs, and all single legs which
are not part of a pair. Theattributescomputed for a
percept are the direction given in the local coordinate
system of the robot, the distance, and a flag, which
indicates whether the percept is a pair of legs or not.
The arrow inFig. 5marks a pair of legs detected with
our approach in the sample laser scan.

6.2. Detection of human faces in color images

Face detection is very important for human–robot
interaction: at first, the detection of a face is a reli-
able indicator for the presence of a person. In addi-
tion, much information is extractable from a face, e.g.
person identity or gaze direction.

The perceptual subsystem that performs face detec-
tion processes color images from the pan-tilt camera

mounted on top of the robot. The detection is mod-
eled as an image scanning process, that repeatedly ex-
tracts sub-images for classification. To speed up the
scanning process, the search space in the image is re-
stricted to regions of skin color. Since we are deal-
ing with images obtained from a camera on a mobile
robot, the task of color segmentation is challenging:

• A moving robot encounters lighting conditions of
high variability.

• There is no constant background in images as the
robot acts in an unstructured environment.

In order to detect color regions under varying lighting
conditions, an adaptive color segmentation algorithm
has to be used. Probably the most famous adaptive im-
age segmentation system is the Pfinder (person finder)
system[23] for tracking a single, completely visible
human wearing homogeneously colored clothes in
front of a static background. In Pfinder, the color of ev-
ery background pixel and each body part (head, torso,
arms, hands, legs, and feet) is modeled as a Gaus-
sian in YUV color space. Additionally, the positions
of body parts are described by Gaussians in image
coordinates.

For the task of skin color segmentation the related
LAFTER system[12] uses similar techniques to track
the face of a single user with a pan-tilt camera. Here
a Gaussian mixture is used to model the background
variations. In order to detect a face in arbitrary back-
grounds captured by a moving camera, recent ap-
proaches avoid explicit background modeling[13,18].
However, these approaches are limited to single faces.

Different from the approaches above our goal is
the tracking ofseveral skin-colored image regions
that may be subjected to different lighting conditions.
This is realized by modeling every skin-colored re-
gion with a separate Gaussian distribution. In order to
stabilize the adaptation step, we use context informa-
tion from face detection to restrict updating to regions
containing faces and select image areas of face size
for adapting the color models. In the following we
give a short overview of our adaptive skin color seg-
mentation approach, more detailed information can
be found in[8]. Note, that for skin color segmenta-
tion on the mobile robot no region-of-interest (ROI)
is used and the complete image is segmented as the
uncertainty for determining ROIs on a mobile robot
is too high to be reliable enough.
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For color representation the r–g color space is used
as it is well suited for representing skin color over a
wide range of lighting conditions[24]. For the special
case of modeling a person’s face a Gaussian distribu-
tion has been shown to be sufficient[14]. For every
pixel the skin probability is calculated as the maximum
of the individual probabilities of the Gaussian mod-
els. The resulting skin probability image is binarized
with an empirically determined threshold of 0.2 and
a connected components analysis yields skin-colored
regions.

In order to prevent the color models from adapt-
ing to skin-colored background objects a face veri-
fication step is carried out on all regions found. For
face detection we apply theeigenface method, oper-
ating on gray-level images. Any image with a size
of n × m pixel can be considered as a point in an
nm-dimensional space. Faces lie in a subspace of the
overall image space. Kirby and Sirovich[9] demon-
strated how Principal Component Analysis (PCA) can
be used to efficiently represent human faces. Later,
Turk and Pentland[20] applied this technique to face
detection. PCA finds the principle components of the
distribution of the face images, which are calledeigen-
faces. They span a subspace (face space) representing
possible face images. We use a face space computed
from a set of sample face images having a size of
37× 43 pixel. These samples only contain the central
parts of faces (eyes, nose and mouth) so that variances
of the background are excluded. In addition, the im-
ages are preprocessed using histogram equalization in
order to compensate varying lighting conditions.

Before a given image can be classified it has to be
rescaled to the size of the sample images and prepro-
cessed. The resulting image is then reconstructed by
a weighted sum of eigenfaces. The resulting residual
error is small if the given image is a face image and
large otherwise. Hence, for classification an empiri-
cally determined threshold can be used to distinguish
face from non-face images.

In order to decide whether a segmented region of
skin color originates from a face, a sub-image at the
position of the region has to be extracted and classi-
fied with the eigenface method. However, the center
of mass (COM) of the region does not necessarily co-
incides with the center of the face due to inaccuracy
of segmentation. Therefore, the area at the region has
to be scanned at different positions and with varying

scalings by using the following method: the center of
the initial sub-image(x, y) coincides with the COM of
the skin-colored region. There and at the two neighbor-
ing positions(x+ 1, y) and(x, y + 1) the correspond-
ing reconstruction errors for the extracted sub-images
are computed. The next position of the scanning pro-
cess is chosen according tosteepest gradient descent.
This process stops if a face is detected or a local min-
imum is reached. In the latter case the process contin-
ues with sub-images of a new size (±7.5%, followed
by ±15%).

For all image regions that are found to contain a
face updating of the color model is performed. In or-
der to stabilize the updating process an empirically
determined global skin color distribution is used for
filtering out non-skin pixels. Based on a theoretical
model Störring et al.[19] have shown that the over-
all skin color distribution occupies a shell-shaped area
in r–g color space that is calledskin locus. Simi-
lar to Soriano et al.[18] we determined the skin lo-
cus for our camera empirically with hand-segmented
training images[8]. With all pixels in an elliptical
image area at a detected face position that lie in-
side the skin locus, local Gaussian parameters are cal-
culated and used to smoothly update the Gaussian
model:

	µnew = γ 	µlocal + (1 − γ)	µold,

�new = γ�local + (1 − γ)�old.

For our system running at approximately 3 Hz a
learning rate ofγ = 0.6 has been shown to provide
good results for persons moving in a standard office
domain.

The perceptsgenerated by this perceptual subsys-
tem are the skin-colored regions classified as face. For
every percept a set ofattributesis computed: with the
position information from the pan-tilt camera the an-
gle of the face relative to the robot is calculated. The
detected face size is used to estimate the distanced

of the person: assuming that sizes of heads of adult
humans only vary to a minor degree, the distance is
proportional to the reciprocal of the size. The height
of the face above the ground is also extracted by using
the distance and the camera position.

Additionally, a face identification step is performed
with a slightly enhanced version of the method pro-
posed in[20]. Each individual is represented in face
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space by a mixture of several Gaussians with diag-
onal covariances. Practical experiments have shown
that the use of 4–6 Gaussians leads to satisfying re-
sults in discrimination accuracy requiring only small
amounts of training material. The mixture densities
are estimated from the projections of up to 50 sam-
ple images per individual. The performance of the
identification process has been evaluated in an exper-
iment with nine individuals. For a test set of 76 im-
ages a recognition rate of 89% could be achieved.
When accepting a rejection rate of 20%, over 96%
of the images classified were assigned to the correct
individual.

6.3. Anchoring component objects

The characteristics of the anchoring processes for
the components legs and face are reflected in their
three main functionalities. Thefind functions of the
leg and face anchor modules anchor only percepts in
front of the robot, if their distance to the robot is less
than 3 m. Additionally, the selected leg percept must
match the predicateis-pair. If the face anchor module
is linked to the anchor of interest, it is first checked in
thefind function whether the field of view of the cam-
era overlaps with the person position provided by the
anchor of interest. If necessary, the camera is pointed
to the direction where the face percept is expected.
The functionalitiestrack andreacquireof the anchor
modules for legs and face are rather similar. All these
functions try to anchor percepts close to the predicted
position while considering restrictions given by the
composition model of the person. More specifically,
the track functions predict the current percept’s po-
sition based on the last known position. In contrast,
the prediction of thereacquirefunctions is based on
the person position obtained from the person anchor
module. If the face anchoring process tracks or tries
to reacquire the face of the person of interest, the
camera is steered to make sure that the position of
the predicted percept does not move out of the field
of view.

6.4. Anchoring composite objects

The person anchoring module receives individual
signatures originating from the leg and the face an-
choring processes. It is important to note that this

Fig. 6. Anchoring a person by anchoring the legs and the face.

data is processed asynchronously by the composite
anchoring process.Fig. 6 shows the framework for
anchoring the composite objectperson. Thecomposi-
tion modelused describes empirically defined person
relations (Fig. 7).

All attributes of the multi-modal anchoring of per-
sons that correspond to spatial positions are described
by Gaussian distributions instead of scalar values. This
allows to model uncertainty for positions. For the at-
tributes of percepts the variance of the Gaussian can be
determined from the measuring inaccuracy of the cor-
responding sensors. Themotion modeldefines how a
position can be predicted for timet(i+1) based on the
known position at timet(i): the mean value remains
unchanged (no velocity assumed) while the variance
increases linearly with time, expressing increasing un-
certainty.

The attribute values contained in the signature list
of the composite anchor module are updated by mul-
tiplying the Gaussian of each attribute value with the
Gaussian representation of the corresponding attribute
values from new percepts. This results in the follow-
ing update formulas that are calculated in thefusion

Fig. 7. The composition model for matching consistent percepts.
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Fig. 8. A schematic example for anchoring a person.

model:

µt(i) = µt(i−1)σp + µpσt(i−1)

σt(i−1) + σp
,

σt(i) = σt(i−1)σp

σt(i−1) + σp
.

The resulting mean valueµt(i) is a weighted sum of
the old mean valueµt(i−1) and the mean value of the
perceptµp. Since the weights are given by the vari-
ances of the old position in the signature list and the
percept, the mean value corresponding to the smaller
variance (more certainty) has a greater effect.

The person attribute values that are updated with the
signatures of the grounded component anchors are the
angleφp and distancedp relative to the robot, the face
heighthp and the person nameNp. The initialization
of the valuesφp anddp is carried out if a component
anchor is grounded for the first time. The attribute val-
ueshp andNp can only be initialized after receiving
the first signature from the face anchoring process.
During normal operation the person’s fusion model
makes sure that the person’s position is smoothly up-
dated by anchored legs and faces. In contrast,hp and
Np can only be updated by processing face signatures.

In order to illustrate the concept a schematic exam-
ple for anchoring one person is shown inFig. 8 de-
picting six consecutive time steps at the beginning of
an anchoring process:

t1 : Person anchoring is started and all component an-
choring processes perform theirfind. The leg de-
tection generates a leg percept and the legs are
anchored for the first time. The leg anchoring pro-
cess switches fromfind to track. Subsequently,
the person position contained in the composite an-
chor module is initialized and the person becomes
grounded. Now, thefindof the face anchor module
is able to point the camera into the right direction.

t2 : The face detection generates a face percept and
the face anchor becomes grounded. The face an-
choring process switches fromfind to track and
the person anchor is updated accordingly.

t3 : Again, the leg detection generates a leg percept.
Based on thetrack function, the leg anchor as well
as the person anchor are updated.

t4 : In this time step, new laser range data is processed
but no matching leg percept is found by the leg an-
choring process. Therefore, it switches fromtrack
to reacquire. No updating of the person anchor
takes place.

t5 : A new camera image is processed but no face per-
cept matching the prediction of the person posi-
tion is found. Thus, the face anchoring process
also switches fromtrack to reacquire. Now the
person is ungrounded since neither the legs nor
the face are grounded.

t6 : In the new laser range data a leg percept matching
the predicted person position is found. Now the
legs as well as the person are grounded again.

7. Results

We implemented the extended anchoring framework
in an object-oriented manner using C++ and added
the person tracking functionality to the ISR software
[10] on the behavior level. When the robot is instructed
to track persons the tracking behavior is started in
parallel with other behaviors necessary, for example,
obstacle avoidance. The tracking behavior initializes
the person anchoring process.

The evaluation of our system was carried out in
an office room, more specifically in an area having
a size of approximately 4.60 m× 3.40 m. The room
was equipped with wooden furniture, which was
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Fig. 9. Scenario: first setup (left); second setup (right).

challenging for the face recognition, because the color
of wood is similar to skin color. We realized two se-
tups (Fig. 9). In the first setup only two persons were
present, one in the middle of the room standing still
(P2) and one guiding the robot (P1). The task forP1
was to become the person of interest by approaching
the robot (<1 m). Then,P1 had to guide the robot
aroundP2 and to leave the room through the door,
while looking towards the camera as long as possible.
The resulting trajectory had a length of approximately
7.5 m. The second setup was similar to the first one,
but three additional personsP3–P5 were placed at
predetermined locations in the room, not affecting
the trajectory resulting from the first setup.P1 was
instructed to try to regain the attention of the robot in
case that the robot lostP1. If this was not possible,
because the robot tried to follow one of the other per-
sons, then the experiment was interpreted as failure.
Both experiments were carried out with ten different
subjects.

Table 1
Results of the first setup withP1 andP2

Run t (s) vø (m/s) Lost Person grounded (%) Legs grounded (%) Face grounded (%) Legs/step Face/step

1 39 0.19 0 99.7 98.9 63.1 1.78 0.76
2 62 0.12 0 96.6 93.8 36.4 1.71 0.90
3 52 0.14 1 95.4 83.5 51.0 1.72 0.57
4 56 0.13 0 99.3 93.8 54.1 1.79 0.59
5 81 0.09 1 96.4 95.7 34.7 1.63 0.40
6 32 0.23 0 99.2 98.7 51.1 1.87 0.78
7 90 0.08 1 80.9 73.2 22.0 1.94 0.49
8 51 0.15 0 99.2 98.8 56.5 1.75 0.70
9 42 0.18 0 98.0 97.9 35.7 1.79 0.45

10 44 0.17 0 88.6 87.1 16.3 1.60 0.39

Average 55 0.14 – 95.3 92.1 42.1 1.76 0.60

Throughout the tests, the laser range finder provided
new laser range data at a rate of 4.6 Hz to the leg detec-
tion algorithm. The processing time necessary for gen-
erating leg percepts and anchoring was negligible. The
adaptive skin-color segmentation processed images
with a size of 189×139 pixels. For each skin-colored
region the face detection was carried out. The pro-
cessing time of the face detection and identification
system depends on the number of skin-colored regions
present in the image. On average the face percepts
were provided at a rate of 3.1 Hz. Again, the time nec-
essary for updating component and composite anchor
was negligible. Together, the person attributes were
updated with an average rate of 7.7 Hz due to the asyn-
chronous anchoring of the different types of percepts.

The first setup (Table 1) was accomplished after an
average time of 55 s. The robot lost three people once,
but they were able to regain the attention of the robot
to complete the run. On average 95.3% of the time a
person was grounded. The legs were grounded 92.1%
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Table 2
Results of the second setup withP1–P5

Run t (s) vø (m/s) Lost Person grounded (%) Legs grounded (%) Face grounded (%) Legs/step Face/step

1 60 0.13 2 93.6 91.5 27.7 2.63 0.41
2 43 0.17 0 96.7 95.0 20.7 2.61 0.32
3 The robot lostP1 and tried to followP3

4 51 0.15 0 98.7 90.4 66.0 2.49 0.74
5 47 0.16 0 96.2 94.5 7.1 2.52 0.20
6 The robot lostP1 and tried to followP2

7 77 0.10 0 99.8 97.5 72.0 2.59 0.85
8 74 0.10 0 93.4 92.6 20.3 2.63 0.22
9 61 0.12 0 97.7 96.1 36.4 2.55 0.56

10 42 0.18 0 86.1 84.2 11.9 2.73 0.26

Average 57 0.13 – 95.3 92.7 32.8 2.59 0.45

of the time, the face 42.1%. On average 1.76 legs and
0.6 faces were processed in every computation step by
the corresponding perceptual systems.

The time needed to successfully perform the task of
the second, more complex setup (Table 2) took only 2 s
more per run on average. For this setup we expected
more percepts to be computed, because more persons
were present. This was in fact true for the legs, but
not for the face. The persons guiding the robot were
taking care of not colliding with one of the persons
P2–P5 and, therefore, looked at the camera less of-
ten. This resulted in a correspondingly lower face de-
tection rate. On average the face was grounded only
32.8% of the time. The legs and the whole person were
grounded for approximately the same time (95.3 and
92.7%) as in the first setup. Runs 3 and 6 resulted in a
failure. A recovery was not possible even though the
face identification would have indicated the mistake.
This is because an active search for a specific person,
which goes beyond the reacquire functionality of an-
choring, is not part of the current implementation.

8. Summary

We presented a method for anchoring composite
symbols through anchoring component symbols to
their associated percepts and subsequently fusing
the resulting data of the component anchors. This
modular approach facilitates multi-modal anchoring
and can easily be extended with additional anchor-

ing processes. We demonstrated the performance of
our approach with a person tracking application for
a mobile robot. In the current implementation laser
range data and color images are processed to find
percepts for the symbolslegsand face. Our extended
anchoring framework allows for multi-modal tracking
of humans. Through taking advantage of the different
sensor capabilities in terms of precision and informa-
tion content a more complete representation of tracked
persons is maintained. Therefore, our approach forms
the basis for more advanced human–robot interaction.
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