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Mental health issues, which can be difficult to diagnose, are a growing concern worldwide. For effective care and support,
early detection of mood-related health concerns is of paramount importance. Typically, survey based instruments including
Ecologically Momentary Assessments (EMA) and Day Reconstruction Method (DRM) are the method of choice for assessing
mood related health. While effective, these methods require some effort and thus both compliance rates as well as quality
of responses can be limited. As an alternative, We present a study that used passively sensed data from smartphones and
wearables and machine learning techniques to predict mood instabilities, an important aspect of mental health. We explored
the effectiveness of the proposed method on two large-scale datasets, finding that as little as three weeks of continuous,
passive recordings were sufficient to reliably predict mood instabilities.
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1 INTRODUCTION
Situated communities consist of geographically co-located, diverse, and close-knit communities of individuals,
who share distinctive social ties [57]. Understanding the well-being of such communities can foster the adoption
of preemptive steps to facilitate the psychological needs of individuals and the communities that they are part of.
Understanding psychosocial well-being can help design informed and tailored care and intervention strategies to
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proactively prevent the onset of mental health challenges among individuals and, as a result, communities at
large.

Mental health challenges account for almost one-half of the disease burden in the United States alone [25], and
the country spends over 200B USD per year to treat mental disorders [48]. Most lifetime mental disorders appear
by the age of 24 [27], and when developed in crucial periods of transition to adulthood impedes an individual’s
psychosocial functioning, vocational development, and access to social capital [25]. Furthermore, if left untreated,
mental health challenges can negatively impact academic success, productivity, and social relationships [28, 67].
Mood is a vital construct of an individual’s mental health. Long or short term changes in the psychological

state of an individual, such as anxiety or depression, are usually reflected by a corresponding mood change
[3, 8, 35, 42] For example, consistent negative affective state is ine of the a diagnostic criterion for depression [8],
and frequent mood swings are symptoms of bipolar disorder (BPD) [2, 3]. The lack of temporal stability in a
person’s mood is defined as mood instability and it can be of clinical significance [36]. For example, depression,
anxiety, life satisfaction are all associated with instability of both positive and negative moodes [20, 31]. Hence,
the measurement of mood instability can be a crucial component towards understanding and treating various
mental health outcomes.

One of the most common methods for measuring mood instability is to ask individuals to respond to self-report
questionnaires (e.g., Affective Lability Scale [21], Affect Intensity Scale [33], or General Emotional Dysregulation
Measure [39]). Though generally reliable, surveys have a number of biases that reduce their validity, including
memory recall bias, social-desirability bias, frame-of-reference bias, amongst others. An alternative to self-report
questionnaires is situated active measurement approaches through Ecological Momentary Assessments (EMA),
i.e., micro-questionnaires that actively probe an individual via electronic prompts [50, 66]. EMA questions are
designed to repeatedly capture real-world data in real-time in naturally occurring contexts [60]. However, it is not
without its limitations, most severe being the fact that it can be disruptive so cannot be used in perpetuity.

What is needed is a passive method to model mood states at scale. Smartphones provide a viable option with
approximately 96% and 92% of US young adults between the age of 18-29 and 30-49, respectively, owning a
smartphone[44] . This widespread adoption of ubiquitous computing technologies, specifically smartphones,
creates an opportunity for using passive sensing modalities to assess aspects of mental health (e.g., mood
instability). Smart devices also allow for combining passive sensing with active user querying through EMAs
[51, 68, 69].
In this article, we assess mood instability of individuals in situated communities (where the individuals

are geographically colocated [57] and share distinctive social ties, such as students on college campuses, and
employees at workplaces by using a combination of passive sensing modalities (e.g., smartphones, wearables)
and an automated classification approach. Specifically, our contributions are as follows:

(1) We developed a model to predict mood instability only using passively sensed data from both smartphone
sensors and wearable sensors of individuals in situated communities.

(2) Based on the evidence that mood instability might be a relatively stable trait [36], we present computational
methods to infer mood stability from three weeks of actively queried EMA responses or three weeks of
passively collected sensor data. We validate our findings with two different kinds of situated communities:
college students on campus and peers in workplaces.

(3) We discuss the implications of our results for situated communities, and also illustrate the privacy and
ethical implications of collecting and using passive sensing data at scale.

2 RELATED WORK
We first define mood instability and its use as an indicator of mental health. We then examine related work
that highlights the difficulty in accurately capturing mood instability. We discuss the use of short and frequent
self-report surveys, so-called Ecological Momentary Assessments (EMAs) for capturing other mental health
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conditions, and how it could be applied to mood instability. Finally, we review related work on using passive
sensing to address limitations of EMAs.

2.1 Mood Instability and Mental Health
Mood instability is often referred to by clinicians and psychologists as a�ective lability, emotional instability,
a�ective and emotional dysregulation, or mood swings [36]. Even though it has been widely described in the
psychology literature, there is a lack of agreement in its precise de�nition [34, 65, 71], though this is true of
other psychological constructs as well. Mood instability encompasses a variety of distinct features such as
�frequent a�ective category shifts, disturbances in a�ect intensity, overdramatic expressions, excessive reactivity
to psychological cues, delayed return to emotional baseline�, etc [29]. According to Diagnostic and Statistical
Manual of Mental Disorders (DSM-IV) [9], in the Borderline Personality Disorder population (BPD), mood
instability re�ects �marked reactivity of mood� including intense irritability and intense anxiety, which might last
a few hours or rarely more than a few days. Mood instability is identi�ed as a common feature of many mental
health conditions. For example, it is one of the widely agreed upon symptoms for BPD [9, 16]. In addition, studies
indicate that of all the BPD diagnostic criteria, mood instability is the strongest predictor of suicidal behavior
[72]. Mood instability is strongly associated with attention de�cit hyperactivity disorder (ADHD), and it has
argued that mood instability should be considered as a diagnostic criteria for ADHD [62]. Mood instability is also
frequent in depression[7] and anxiety disorder [5].

Despite these well known mental health associations, measuring and characterizing mood instability has
proven to be challenging [19]. Traditional methods of measuring mood instability rely on respondents' recall,
which is captured through surveys or interviews [65]. One of the most commonly used clinical survey instruments
for quantifying mood instability in BLPD and other psychiatric disorders [22, 30] is the A�ective Lability Scale
(ALS)[21]. ALS asks respondents to rate a statement on how closely it characterizes them (e.g., �One minute
I can be feeling OK, and then the next minute I'm tense, jittery, and nervous.�). First, there is no mention of
how much historical context the participants should consider while answering this question so it can vary from
participant to participant ; Second, individuals are most likely to recall experiences that are consistent with
the current mood state. Hence, they might su�er from recall bias, in which they are biased when recalling past
experiences, especially when they are asked to aggregate moods or experiences over a long period of time [24].
Previous research suggests that the responses to instruments, which attempt to capture retrospective mood, are
primarily in�uenced by the peak and end of an a�ectively intense period [18]. Hence, it is very unlikely that the
participants can report the variation in their own mood if they are asked to re�ect on it after a long period of
time. In this paper, we address some of these challenges by investigating whether we can assess mood instability
using passively sensed data from smartphones and social media.

2.2 Sensing Mental Health with EMA
Ecological Momentary Assessment (EMA) have emerged as a popular technique [60]. EMA items are short
questions designed to capture in-situ real time information about a person's experience. This approach is also
often referred to as an Experience Sampling Method (ESM) [58]. EMAs address some of the limitations of survey-
based approaches. One of the advantages of EMAs is that the timing can be varied in that EMAs can be gathered
at a certain time, after a certain event, or a combination of both [65]. In addition, EMAs can vary based on the
platform, including text messages, voice calls [59, 61], paper-pencil diaries, smart devices [50, 66] etc.. Hence,
EMA provides several advantages over traditional methods (e.g., surveys, interviews, etc.) when a dynamic
psychological process (e.g., mood) is of interest to researchers [45]. In fact, it has been used widely as a tool for in
situ measurement of a�ective phenomenon such as mood [60]. Furthermore, EMAs can also be con�gured to
record context during measurement. For example, characteristics of the environment (e.g., location, time, etc.)
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can be recorded while an EMA is being answered [65]. Finally, EMAs are easier to answer compared to surveys
simply due to their shorter length and are also less prone to recall bias [60].

2.3 Sensing Mental Health with Passive Sensors and EMAs
Researchers from various disciplines have used EMAs alongside passive sensors for assessing the mental health of
their target populations [53, 68, 69]. For example, Wang et al. [68, 69] gathered mental health data on mood, stress,
among other measures, of (Dartmouth) college students using EMAs. They also recorded data about students'
daily activities (e.g., walking, conversation) using passive sensors and found a correlation between the two data
sources [68]. Saha et al. inferred mood instability of a Georgia Tech student sample based on EMA and social
media data [53]. Several similar studies on various samples have been conducted [1, 14, 51], using EMAs to collect
ground truth data of mental health markers (e.g., stress, mood, depression, etc).

Even though EMAs have several advantages for collecting data �in-the-wild�, there are several drawbacks for
EMA-based studies [58]. Since these studies usually prompt their participants frequently, they pose a challenge
of response burden for the participants [63]. This creates a trade-o� between increasing the granularity of data
collection and reducing data burden on the participants. In addition, recruiting participants over long periods
of time incurs substantial logistical and �nancial constraints [19]. Moreover, low response rates in EMA-based
studies can be a major limitation. Heron et al. conducted a survey of EMA-based studies and found that the survey
completion rate was only 76% [23]. Even when response rates are good, this does not imply that the responses
are of good quality [11].

Passing sensing technologies might provide an attractive alternative to EMAs. These technologies are becoming
more prevalent with the advent of smart devices (e.g., smartphones, smartwatches), especially in college campuses
in the US. According to a recent survey, 91% of US-based college students own smartphones [44]. In addition,
social media is also popular medium of expression for college students [43], which presents a unique opportunity
to investigate how, in such a technology-centric community, we can leverage their choice of technology to assess
their mental health. In this paper, we leverage such passively sensed data collected via ubiquituous technologies
to predict mood instability levels.

Despite the advantages of passive sensing data in terms of their density and high �delity, this data can only be
collected in a prospective fashion. That is, they are typically only collected through the duration of a study. In
addition, passive sensing streams are unable to capture the external or surrounding factors that can potentially
in�uence the �uctuations on an individual's mood.

On the other hand, social media enables us to collect historical and longitudinal data that is self-recorded in
the present. Social media doubles up as a verbal sensor, and in the psychology and psycholinguistics literature,
psychological health states can be inferred via language [12]. Drawing on that, in recent years, social media have
been employed as a passive sensor in mental health studies [15, 55]. When considered via the lens of the Social
Ecological Model [10, 52], the attributes of individuals can be considered to be deeply embedded in the complex
interplay between an individual, their relationships, the communities they belong to, and the societal factors.
Social media provides a passive mechanism to gather quanti�able signals about the social ecological dimensions
relating to an individual's behavior. Drawing on this theoretical construct and a rich body of prior work, this
paper incorporates similar situated community-speci�c temporal mood to control for the contextual e�ects on
individuals' mood instability. In this paper, we add to this body of work by investigating how passive sensing can
be e�ective for inferring mood instability in two situated communities � college campuses and workplaces.

3 STUDY AND DATASETS
In order to address our research questions as formulated in the previous section, we conducted a study based on
the StudentLife dataset1 and the Tesserae project.

1http://studentlife.cs.dartmouth.edu/dataset.html
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Table 1. Student Distribution according to their Academic Year in the StudentLife Dataset

Student Category # Students

Undergraduate Students
Freshmen 2
Sophmores 6
Juniors 14
Seniors 8
Graduate Students
1st Year Master's 14
2nd Year Master's 1
Ph.D. 3
Total 48

Table 2. Demographic Information of Participants in the StudentLife Dataset

Gender # Students

Male 38
Female 10

(a) Gender Distribution of StudentLife Dataset

Ethnic Identity # Students

Caucasian 23
Asian 23
African American 2

(b) Ethnic Identity of the Participants in the StudentLife Dataset

3.1 StudentLife Dataset
Wang et al. collected and released the StudentLife dataset as a part of their research e�ort on inferring men-
tal, physical, and academic well-being of students on a US college campus (Dartmouth University) through
smartphone-based data sensing and analysis [68]. The research team recruited 60 students to participate for a
period of 10 weeks during the Spring 2013 semester. Among these, �ve students dropped out of the class, and
seven students did not continue with the study, resulting in 48 students completing the study. Table 1 and 2
summarizes the dataset through its descriptive statistics.

3.1.1 Types of Data.The StudentLife dataset consists of three types of data:i) passive sensor data;ii) Ecological
Momentary Assessment (EMA) data; andiii) survey data. In what follows we will provide an overview of the
dataset as it is of relevance for the work presented in this paper.

Passively Sensed DataAn Android application (�StudentLife", developed by the Dartmouth research team)
collected and stored sensor data from students' smartphones. The research team used a range of computa-
tional methods for inferring higher level activities (e.g., conversation, activity, etc.) from raw sensor data.
Table 3 lists the types of passively sensed information that were calculated from various sensors and shared
as a part of the public dataset.

Ecological Momentary Assessment (EMA) Data Participants were prompted to answer EMA items multi-
ple times a day. These items asked about the in-situ experience of the students with respect to psychological
(e.g., mood, stress, etc.) and behavioral measures, such as the number of people the study participants
encountered, sleep duration, amount of time spent on di�erent activities, etc. Through these EMAs, the
research team also deployed the photographic a�ect meter (PAM) [46] to record in-situ mood reports. PAM
is a validated instrument for capturing self-reported moods of people, which is based on Russel et al.'s
circumplex model of a�ect [49].
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Table 3. Passively Sensed Data in the StudentLife Dataset

Sensed Phenomenon Sensor Modalities

Inferred Activity Accelerometer
Audio Microphone
Inferred Conversation Audio Data
Sociability Bluetooth
Darkness Light Sensor
Indoor Mobility WiFi Data
Outdoor Mobility GPS
Phone Charging Event
Phone Locking Event

Table 4. Overview of the passively sensed data as recorded though StudentLife.

Measure Mean (Days) Median (Days) Stdev. (Days)

Indoor Mobility 56.31 58 10.82
Activity 59.49 63 9.21
Conversation 56.10 58 10.10
Outdoor Mobility 58.47 63 9.60
Photographic A�ect Meter 46.76 51 19.11

Survey Data The third type of actively queried data comprises responses to the following validated mental
health questionnaires, which were administered before and after the study. However, none of these survey
data was used for this study.

3.2 The Tesserae Project
Our second dataset comes from the Tesserae study that recruited 757 participants2 who are information workers
in cognitively demanding �elds (e.g. engineers, consultants, managers) in the U.S. [37, 38, 52, 56]. The participants
were enrolled from January 2018 through July 2018. The study was approved by Institutional Review Board at
the University of Notre Dame who was the lead institution.

Participants responded to a set of self-reported survey questionnaires at the onset of the study and provided
passively sensed data through four major sensing streams : bluetooth beacons; wearable; smartphone agent; and
social media. They were provided with an informed-consent document with descriptions of each sensing stream
and the data collected from each, and they were required to consent to each sensing stream individually. The
data was de-identi�ed and stored on secured data servers with limited access privileges.

The enrollment process consisted of responding to a set of initial survey questionnaires related to demographics
(age, gender, education, and income). The participant pool consists of 350 males and 253 females, where the
average age is 34 years (stdev. = 9.34). The majority of the participants had a Bachelor's (52%) or Master's degree
(35%).

Participants were additionally required to answer periodic EMAs once per day for approximately two months.
Of present interest is daily a�ect as measured by the PANAS-Short scale [64].

2Note that this was an ongoing study at the time of writing and this paper uses sensed data collected until August 21st, 2018. A randomly
selected 154 participants were �blinded at source�, and their data is only available for external validation. This paper only analyzes data from
the remaining 603 �non-blinded� participants.
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Table 5. Descriptive statistics of # days data collected in the Tesserae Dataset

Type of Data Range (Days) Median (Days) Stdev. (Days)

Study Duration 16:205 99 46.7
Study Duration (while PANAS-short was administered) 3:56 48 13
Bluetooth (Entire Study Period) 1:159 37 32.6
Wearable (while PANAS-short was administered) 27:56 46 7.2
Smartphone (while PANAS-short was administered) 35:56 48 5.9

To passively collect data about participants' behavior, this study deployed three continual sensing streams:
bluetooth beacons, smartphone application, and wearable. However, we used two of these streams, which are
explained below:

Wearable Participants were provided with a �tness band (Garmin Vivosmart [4]), which they would wear
throughout the day. The wearable continually tracks health measures, such as heart rate, stress, and physical
activity in the form of sleep, footsteps, and calories burnt.

Smartphone Application A modi�ed verions of the Student Life application [68] was installed on participants'
spersonal martphones (android and iPhones). This application tracks their phone use such as lock behavior, call
durations, and uses mobile sensors to track their mobility and physical activity.

The participants were enrolled over 6 months (January to July 2018) in a staggered fashion, averaging 111 days
of data per participant. Table 5 reports the descriptive statistics of the number of days of passively sensed data
that we collected per participant through each of the sensor streams. We obtained an average of 108 days data
per participant from the wearable and 101 days/participants of data from the phone application. When limited
to days when the PANAS-short EMA was administered, the average available days of data was 49 and 51 for
wearable and smartphone, respectively

4 METHODOLOGY
In this section, we discuss how we estimate mood instability from self-reports of individual's a�ective states,
how we excluded participants based on the amount of availabe data, how we calculated features, and �nally our
approach to the predicting mood instability score.

4.1 Calculating Mood Instability
The participants, in the StudentLife study, responsed to the PAM EMAs by selecting the picture which best
represents their mood at that particular time. Since, valence and arousal can have four distinct integer values:
f� 2; � 1;+1;+2g [46], PAM can represent 16 distinct mood states. Table 6 illustrates those 16 mood states and
their corresponding valence and arousal values.

The participants, in the Tesserae Project, reported a�ect using the PANAS-Short scale. PANAS-Short measures
�ve positive (alert, excited, enthusiastic, inspired, determined) and �ve negative (distressed, upset, scared, afraid,
nervous) emotions on a scale of 1 (low) to 5 (high).

We quantify each of these a�ect responses on the two dimensions of Russell's Circumplex [47], valence and
arousal, using the A�ective Norms for English Words (ANEW) lexicon [40]. ANEW is an a�ect dictionary, curated
after rigorous psychometric studies that contains a list of over a thousand a�ect categories, and their associated
valence and arousal scores, and has been used in prior work to understand expressions of mood and a�ect [57].

Recall that EMAs were scheduled at random time throughout the day for the StudentLife data set. To calculate
mood instability, it is necessary to compute successive di�erences of valence and arousal responses of the
participants over the entire study period. Hence, we adopted a method proposed by Jahng et al. [26], and
computed the Adjusted Successive Di�erence (ASD) by adjusting both valence and arousal responses with respect
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to time (See Saha et al. for an example of using this method to infer mood instability of college students based on
their social media usage).

The method works as follows. Letxi be the valence or arousal of a participant's logged mood state at timet i
such that we can compute the ASDs based on Equations 1 and 2:

ASDi +1 =
xi +1 � xi

[(t i +1 � t i )=median(t i +1 � t i )]�
(1)

SSEE(� ) =
X

i
[EAASD(t i +1� t i )(� ) � C(� )]2 (2)

=
N � 1X

i =1

�
E

�
jxi +1 � xi j

[(t i +1 � t i =median(t i +1 � t i )]�

�
� C(� )

� 2

In Equation 1,� is chosen by minimizing the cost function,SSEE(� ), as de�ned in Equation 2.

Fig. 1. Screenshot of the Photographic A�ect Meter (PAM)
deployed on an Android smartphone, which was used for
gathering mood reports in the StudentLife dataset

Table 6. Mapping of moods on the PAM scale to valence and
arousal values as proposed in [46] while working with the
StudentLife dataset

Mood Valence Arousal

Afraid -2 2
Angry -1 1
Calm 1 -1
Delighted 2 2
Excited 1 2
Frustrated -2 1
Glad 2 1
Gloomy -2 -2
Happy 1 1
Miserable -2 -1
Sad -1 -1
Satisfied 2 -1
Serene 2 -2
Sleepy 1 -2
Tense -1 2
Tired -1 -2

We performed a non-parametric smoothing regression method called lowess [13] to calculate the Expected
Adjust Successive Di�erence (EASD). Afterwards, we calculate the Expected Adjusted Absolute Successive
Di�erence (EAASD). This eliminates the dependency of EASD on the time intervals.C(� ) in Equation 2 is the
EAASD(� ) at median time interval.

MIS = MAD(ASDv alence) + MAD(ASDarousal) (3)

Then, we calculated the mean absolute deviation for both valence and arousal for each participant. We refer
to the Mean Absolute Deviation for valence as MAD(ASDvalence) and Mean Absolute Deviation for arousal as
MAD(ASDarousal). After calculating MAD(ASDvalence) and MAD(ASDarousal), we add them to obtain the Mood
Instability Score (MIS) for each participant (refer to Equation 3). A high MIS (such as for participant 15 (StudentLife
Dataset) and participant b (Tesserae project) in Figure 2) indicates that the participant has high variation of

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 3, Article 75. Publication date: September 2019.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Mood Instability and Mental Health
	2.2 Sensing Mental Health with EMA
	2.3 Sensing Mental Health with Passive Sensors and EMAs

	3 Study and Datasets
	3.1 StudentLife Dataset
	3.2 The Tesserae Project

	4 Methodology
	4.1 Calculating Mood Instability
	4.2 Exclusion Criteria
	4.3 Feature Extraction
	4.4 Automated Assessment, Training, and Testing Protocols

	5 Results
	5.1 Mood Instability Inference
	5.2 Early Prediction of Mood Instability
	5.3 Correlation Analysis of Features

	6 Discussion
	6.1 Implications for Stakeholders at Situated Communities
	6.2 Practical Implications
	6.3 Implications for Researchers
	6.4 Privacy and Ethics
	6.5 Limitations and Future Work

	References
	A Appendix

